Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Geoscientific Model Development ; 16(11):3313-3334, 2023.
Article in English | ProQuest Central | ID: covidwho-20245068

ABSTRACT

Using climate-optimized flight trajectories is one essential measure to reduce aviation's climate impact. Detailed knowledge of temporal and spatial climate sensitivity for aviation emissions in the atmosphere is required to realize such a climate mitigation measure. The algorithmic Climate Change Functions (aCCFs) represent the basis for such purposes. This paper presents the first version of the Algorithmic Climate Change Function submodel (ACCF 1.0) within the European Centre HAMburg general circulation model (ECHAM) and Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model framework. In the ACCF 1.0, we implement a set of aCCFs (version 1.0) to estimate the average temperature response over 20 years (ATR20) resulting from aviation CO2 emissions and non-CO2 impacts, such as NOx emissions (via ozone production and methane destruction), water vapour emissions, and contrail cirrus. While the aCCF concept has been introduced in previous research, here, we publish a consistent set of aCCF formulas in terms of fuel scenario, metric, and efficacy for the first time. In particular, this paper elaborates on contrail aCCF development, which has not been published before. ACCF 1.0 uses the simulated atmospheric conditions at the emission location as input to calculate the ATR20 per unit of fuel burned, per NOx emitted, or per flown kilometre.In this research, we perform quality checks of the ACCF 1.0 outputs in two aspects. Firstly, we compare climatological values calculated by ACCF 1.0 to previous studies. The comparison confirms that in the Northern Hemisphere between 150–300 hPa altitude (flight corridor), the vertical and latitudinal structure of NOx-induced ozone and H2O effects are well represented by the ACCF model output. The NOx-induced methane effects increase towards lower altitudes and higher latitudes, which behaves differently from the existing literature. For contrail cirrus, the climatological pattern of the ACCF model output corresponds with the literature, except that contrail-cirrus aCCF generates values at low altitudes near polar regions, which is caused by the conditions set up for contrail formation. Secondly, we evaluate the reduction of NOx-induced ozone effects through trajectory optimization, employing the tagging chemistry approach (contribution approach to tag species according to their emission categories and to inherit these tags to other species during the subsequent chemical reactions). The simulation results show that climate-optimized trajectories reduce the radiative forcing contribution from aviation NOx-induced ozone compared to cost-optimized trajectories. Finally, we couple the ACCF 1.0 to the air traffic simulation submodel AirTraf version 2.0 and demonstrate the variability of the flight trajectories when the efficacy of individual effects is considered. Based on the 1 d simulation results of a subset of European flights, the total ATR20 of the climate-optimized flights is significantly lower (roughly 50 % less) than that of the cost-optimized flights, with the most considerable contribution from contrail cirrus. The CO2 contribution observed in this study is low compared with the non-CO2 effects, which requires further diagnosis.

2.
Earth System Science Data ; 15(5):1947-1968, 2023.
Article in English | ProQuest Central | ID: covidwho-2319341

ABSTRACT

Volatile organic compounds (VOCs) have direct influences on air quality and climate. They indeed play a key role in atmospheric chemistry as precursors of secondary pollutants, such as ozone (O3) and secondary organic aerosols (SOA). In this respect, long-term datasets of in situ atmospheric measurements are crucial for characterizing the variability of atmospheric chemical composition, its sources, and trends. The ongoing establishment of the Aerosols, Cloud, and Trace gases Research InfraStructure (ACTRIS) allows implementation of the collection and provision of such high-quality datasets. In this context, online and continuous measurements of O3, nitrogen oxides (NOx), and aerosols have been carried out since 2012 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory, located in the Paris region, France. Within the last decade, VOC measurements were conducted offline at SIRTA, until the implementation of real-time monitoring which started in January 2020 using a proton-transfer-reaction quadrupole mass spectrometer (PTR-Q-MS).The dataset acquired during the first 2 years of online VOC measurements provides insights into their seasonal and diurnal variabilities. The additional long-term datasets obtained from co-located measurements (NOx, aerosol physical and chemical properties, meteorological parameters) are used to better characterize the atmospheric conditions and to further interpret the obtained results. Results also include insights into VOC main sources and the influence of meteorological conditions and air mass origin on their levels in the Paris region. Due to the COVID-19 pandemic, the year 2020 notably saw a quasi-total lockdown in France in spring and a lighter one in autumn. Therefore, the focus is placed on the impact of these lockdowns on the VOC variability and sources. A change in the behaviour of VOC markers for anthropogenic sources was observed during the first lockdown, reflecting a change in human activities. A comparison with gas chromatography data from the Paris city centre consolidates the regional representativity of the SIRTA station for benzene, while differences are observed for shorter-lived compounds with a notable impact of their local sources. This dataset could be further used as input for atmospheric models and can be found at 10.14768/f8c46735-e6c3-45e2-8f6f-26c6d67c4723 (Simon et al., 2022a).

3.
Journal of Geophysical Research Atmospheres ; 128(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2257703

ABSTRACT

The radiative effects of the large‐scale air traffic slowdown during April and May 2020 due to the international response to the COVID‐19 pandemic are estimated by comparing the coverage (CC), optical properties, and radiative forcing of persistent linear contrails over the conterminous United States and two surrounding oceanic air corridors during the slowdown period and a similar baseline period during 2018 and 2019 when air traffic was unrestricted. The detected CC during the slowdown period decreased by an area‐averaged mean of 41% for the three analysis boxes. The retrieved contrail optical properties were mostly similar for both periods. Total shortwave contrail radiative forcings (CRFs) during the slowdown were 34% and 42% smaller for Terra and Aqua, respectively. The corresponding differences for longwave CRF were 33% for Terra and 40% for Aqua. To account for the impact of any changes in the atmospheric environment between baseline and slowdown periods on detected CC amounts, the contrail formation potential (CFP) was computed from reanalysis data. In addition, a filtered CFP (fCFP) was also developed to account for factors that may affect contrail formation and visibility of persistent contrails in satellite imagery. The CFP and fCFP were combined with air traffic data to create empirical models that estimated CC during the baseline and slowdown periods and were compared to the detected CC. The models confirm that decreases in CC and radiative forcing during the slowdown period were mostly due to the reduction in air traffic, and partly due to environmental changes.Alternate :Plain Language SummaryContrails produced by aircraft flying in cold but humid air both warm the atmosphere by reducing infrared radiation emitted back into space and cool it by increasing reflected sunlight. Due to the decrease in air traffic during the first months of the COVID pandemic, fewer satellite‐detectable contrails were produced compared to pre‐pandemic times, and thus the radiative effects of contrails were also diminished. But changes in the overall temperature and humidity at aircraft cruise altitudes also affect contrail formation and might explain at least some of the observed decrease in contrail coverage during April and May 2020. Analysis of satellite imagery showed that the thickness and ice‐crystal size of the contrails during the COVID period did not change much from pre‐pandemic contrails. The regional contrail coverage was accurately simulated from a combination of the estimated air traffic activity at cruise altitude and the probable frequency of when atmospheric conditions were favorable for contrail formation. This simulation confirms that most of the decrease in contrails and their radiative effects during the COVID‐related slowdown period were due to the reduction in air traffic, and to a lesser extent to changes in temperature and humidity at cruise altitude during April and May 2020.

4.
Dissertation Abstracts International Section A: Humanities and Social Sciences ; 84(5-A):No Pagination Specified, 2023.
Article in English | APA PsycInfo | ID: covidwho-2256390

ABSTRACT

I identify changes in human action during emergencies such as heavy precipitation and shelter-in-place orders. In two chapters I explore the effects of precipitation on educational attainment and birth rates as residential broadband access increases. In my third chapter I identify the movement of pets in and out of the home as a trigger for domestic violence during the COVID-19 lockdown. I estimate difference-in-difference regressions with panel data, coming to three conclusions. First: educational attainment in Appalachia is stunted by precipitation, as students have difficulty getting to school in bad weather. As this historically under-educated region of the US gains internet access, the negative effects of rain and snow disappear. Second: there is little evidence that precipitation increases natality. What little evidence of this "blizzard baby" phenomenon I do find is negated by mobile internet access, which decreases births nine months after high precipitation. Third: during COVID-19 shelter-in-place orders, domestic violence decreases after pets are surrendered to local shelters and increases when pets are confiscated. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

5.
Journal of Hospitality and Tourism Management ; 49:353-363, 2021.
Article in English | APA PsycInfo | ID: covidwho-2255765

ABSTRACT

Camping is an outdoor accommodation and type of recreation that is susceptible to weather and climate change. Camping-in addition to the relationships camping shares with weather- remains understudied despite the subsectors' salient economic impact and high participation rate. The observable effects of non-meteorological/climatological (e.g., pandemic) is also a topic that has received limited attention. Accordingly, we introduce the Camping-Weather-Disaster (CWD) framework to examine the concurrent impact of weather and the COVID-19 disaster on post-disaster camping trip plans among leisure travelers in the 48 contiguous United States (n = 2442). Extending the Construal Level Theory, the CWD framework considers traveler construal (i.e., understanding) of a disaster and psychological distance (i.e., mental frame of reference) from a disaster alongside empirically observable state-level weather and COVID-19 cases. Results demonstrate that (1) concrete construal about timing and distance of travel is positively related to post-disaster camping trip plans;(2) weather is a significant predictor of post-disaster camping trip plans where there are regionally fewer COVID-19 cases;and (3) state-level COVID-19 cases are the most salient predictor of post-disaster camping trip plans where there are regionally more COVID-19 cases. Although the study context is camping, the CWD framework can be applied to other subsectors of tourism to build understanding and adaptive capacity to future natural conditions and disasters. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

6.
Environmental Research Letters ; 17(12):123001, 2022.
Article in English | ProQuest Central | ID: covidwho-2134662

ABSTRACT

Since 2013, China has taken a series of actions to relieve serious PM2.5 pollution. As a result, the annual PM2.5 concentration decreased by more than 50% from 2013 to 2021. However, ozone pollution has become more pronounced, especially in the North China Plain. Here, we review the impacts of anthropogenic emissions, meteorology, and atmospheric processes on ambient PM2.5 loading and components and O3 pollution in China. The reported influence of interannual meteorological changes on PM2.5 and O3 pollution during 2013–2019 ranged from 10%–20% and 20%–40%, respectively. During the same period, the anthropogenic emissions of NOx, SO2, primary PM2.5, NMVOC and NH3 are estimated to decrease by 38%, 51%, 35%, 11% and 17%, respectively. Such emission reduction is the main cause for the decrease in PM2.5 concentration across China. However, the imbalanced reductions in various precursors also result in the variation in nitrate gas-particle partitioning and hence an increase in the nitrate fraction in PM2.5. The increase of ozone concentration and the enhancement of atmospheric oxidation capacity can also have substantial impact on the secondary components of PM2.5, which partly explained the growth of organic aerosols during haze events and the COVID-19 shutdown period. The uneven reduction in NOx and NMVOC is suggested to be the most important reason for the rapid O3 increase after 2013. In addition, the decrease in PM2.5 may also have affected O3 formation via radiation effects and heterogeneous reactions. Moreover, climate change is expected to influence both anthropogenic emissions and atmospheric processes. However, the extent and pathways of the PM2.5-O3 interplay and how it will be impacted by the changing emission and atmospheric conditions making the synergetic control of PM2.5 and O3 difficult. Further research on the interaction of PM2.5 and O3 is needed to provide basis for a scientifically-grounded and effective co-control strategy.

7.
Atmospheric Chemistry and Physics ; 22(18):12153-12166, 2022.
Article in English | ProQuest Central | ID: covidwho-2040263

ABSTRACT

A knowledge gap exists concerning how chemical composition and sources respond to implemented policy control measures for aerosols, particularly in a semi-arid region. To address this, a single year's offline measurement was conducted in Hohhot, a semi-arid city in northern China, to reveal the driving factors of severe air pollution in a semi-arid region and assess the impact of the COVID-19 lockdown measures on chemical characteristics and sources of PM2.5. Organic matter, mineral dust, sulfate and nitrate accounted for 31.5 %, 14.2 %, 13.4 % and 12.3 % of the total PM2.5 mass, respectively. Coal combustion, vehicular emission, crustal source and secondary inorganic aerosols were the main sources of PM2.5 in Hohhot, at 38.3 %, 35.0 %, 13.5 %, and 11.4 %, respectively. Due to the coupling effect of emission reduction and improved atmospheric conditions, the concentration of secondary inorganic components, organic matter and elemental carbon declined substantially from the pre-lockdown (pre-LD) period to the lockdown (LD) and post-lockdown (post-LD) periods. The source contribution of secondary inorganic aerosols increased (from 21.1 % to 37.8 %), whereas the contribution of vehicular emission reduced (from 35.5 % to 4.4 %) due to lockdown measures. The rapid generation of secondary inorganic components caused by unfavorable meteorological conditions during lockdown led to serious pollution. This study elucidates the complex relationship between air quality and environmental policy.

8.
Atmospheric Chemistry and Physics ; 22(16):10875-10900, 2022.
Article in English | ProQuest Central | ID: covidwho-2025096

ABSTRACT

The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable source of information to monitor the NOx emissions that adversely affect air quality. We conduct a series of experiments using a 4×4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April–September 2019 in eastern Texas to evaluate the multiple challenges that arise from reconciling the NOx emissions in model simulations with TROPOMI. We find an increase in NO2 (+17 % in urban areas) when transitioning from the TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in eastern Texas, with the greatest difference (+25 %) in the city centers and smaller differences (+5 %) in less polluted areas. We find that lightningNOx emissions in the model simulation contribute up to 24 % of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas urban areas. NOx emissions inventories, when using locally resolved inputs, agree with NOx emissions derived from TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances, with a small NOx underestimate in Dallas–Fort Worth (-13 %) and Houston (-20 %). In the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements, i.e., the satellite NO2 is consistently smaller by 40 %–60 % than the modeled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty distinguishingNO2 attributed to power plants from the background NO2 concentrations in Texas – an area with atmospheric conditions that cause short NO2 lifetimes. Second, the NOx/NO2 ratio in the model may be underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 column information with formaldehyde (HCHO) column information. We find modest low biases in the model relative to TROPOMI HCHO, with -9 % underestimate in eastern Texas and -21 % in areas of central Texas with lower biogenic volatile organic compound (VOC) emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx limited almost everywhere in the domain, except along the Houston Ship Channel, near the Dallas/Fort Worth International airport, and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning hours that TROPOMI cannot observe and would be well-suited for analysis with NO2 and HCHO from the upcoming TEMPO (Tropospheric Emissions: Monitoring Pollution) mission. This study highlights that TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations.

9.
Dissertation Abstracts International: Section B: The Sciences and Engineering ; 83(9-B):No Pagination Specified, 2022.
Article in English | APA PsycInfo | ID: covidwho-1958433

ABSTRACT

Climate change has reached the point of a global crisis. The need for new paradigms of thinking and conceptualizing the problems is more evident than ever. This dissertation takes a decolonial paradigm of thinking and prioritizes the experiences of indigenous women of Saman, Iran of climate change through their environmental knowledge systems. This study is a co-constructed exploration of relational experiences and perceptions of climate change among eight elderly women of Saman who are over age 60. The people of Saman are indigenous to their land and are primarily farmers. These women were horizontally interviewed by the researcher's community partner, Fahimeh, due to Covid-19 limitations. In an indigenous rural community like Saman, the climate is related to every single facet of life. They explained that lack of snow and rain;lack of water in the river, qanats, and fountains;changes in seasons, community rituals, and methods of agriculture;forced modernization;and violence against nature altogether have caused a significant long-term change in the climate. Saman used to have regenerative agriculture, no chemicals, zero waste, natural food preservation, and community rituals designed for food security. Women explained how Barakat had left life, and Jan is lacking from food that is produced by force and violence from the earth. This work intentionally refrains from offering modernist psychological analysis of these women's experiences, and instead, gives voice to their intergenerational, ecological knowledge system. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

10.
Atmospheric Chemistry and Physics ; 22(13):8683-8699, 2022.
Article in English | ProQuest Central | ID: covidwho-1924523

ABSTRACT

The abrupt reduction in human activities during the first lockdown of the COVID-19 pandemic created unprecedented atmospheric conditions. To quantify the changes in lower tropospheric air pollution, we conducted the BLUESKY aircraft campaign and measured vertical profiles of black carbon (BC) aerosol particles over western and southern Europe in May and June 2020. We compared the results to similar measurements of the EMeRGe EU campaign performed in July 2017 and found that the BC mass concentrations (MBC) were reduced by about 48%. For BC particle number concentrations, we found comparable reductions. Based on ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-transport model simulations, we found differences in meteorological conditions and flight patterns responsible for about 7% of the MBC reductions. Accordingly 41% of MBC reductions can be attributed to reduced anthropogenic emissions. Our results reflect the strong and immediate positive effect of changes in human activities on air quality and the atmospheric role of BC aerosols as a major air pollutant in the Anthropocene.

11.
Australasian Journal of Disaster and Trauma Studies ; 25(3):79-86, 2021.
Article in English | APA PsycInfo | ID: covidwho-1772395

ABSTRACT

The citizen science component of a project on climate change adaptation at the European regional level (Klimawandelanpassung auf regionaler Ebene;KARECS) established a layperson weather network with two high schools in the Bavarian Prealps south of Munich, Germany, to measure small-scale weather phenomena and impacts of weather and to build decision-relevant knowledge about weather and climate change. Over the summer of 2020, local students collected weather data with self-build micro weather stations and reported observed weather phenomena and impacts. The preliminary results show that despite the ongoing COVID-19 situation, the students actively engaged in the project, created valid data, and enabled detailed data analysis of weather observations and reports. First insights show that visual observations of weather phenomena such as heavy rainfall aligned well with the measurements. Students' primary motivations to participate in the project were the desire to contribute to scientific research and their interest in science and weather. The project continued over the summer of 2021 with further analysis ongoing. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

SELECTION OF CITATIONS
SEARCH DETAIL